Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Appl Microbiol Biotechnol ; 106(11): 4091-4114, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1864371

ABSTRACT

Novel coronavirus (SARS-CoV-2) leads to coronavirus disease 19 (COVID-19), declared as a pandemic that outbreaks within almost 225 countries worldwide. For the time being, numerous mutations have been reported that led to the generation of numerous variants spread more rapidly. This study aims to establish an efficient multi-epitope subunit vaccine that could elicit both T-cell and B-cell responses sufficient to recognize three confirmed surface proteins of the virus. The sequences of the viral surface proteins, e.g., an envelope protein (E), membrane glycoprotein (M), and S1 and S2 domain of spike surface glycoprotein (S), were analyzed by an immunoinformatic approach. Top immunogenic epitopes have been selected based on the assessment of the affinity with MHC class-I and MHC class-II, population coverage, along with conservancy among wild type and new variants of SARS-CoV-2 genomes. Molecular docking and molecular dynamic simulation suggest that the proposed top peptides have the potential to interact with the highest number of both the MHC class I and MHC class II. The epitopes were assembled by the appropriate linkers to form a multi-epitope vaccine. Epitopes used in the vaccine construct are conserved in all the variants evolved till now. This in silico-designed multi-epitope vaccine is highly immunogenic and induces levels of SARS-CoV2-neutralizing antibodies in mice, which is detected by inhibition of cytopathic effect in Vero cell monolayer. Further studies are required to improve its efficiency in the prevention of virus replication in lung tissue, in addition to safety validation as a step for human application to combat SARS-CoV-2 variants. KEY POINTS: • We discovered five T-cell epitopes from three surface proteins of SARS-CoV-2. • These are conserved in the wild-type virus and variants, e.g., beta, delta, and omicron. • The multi-epitope vaccine can induce IgG in mice that can neutralize the virus.


Subject(s)
COVID-19 , Viral Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/genetics , Humans , Mice , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit/genetics
2.
Ecancermedicalscience ; 15: 1189, 2021.
Article in English | MEDLINE | ID: covidwho-1394745

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic presents serious challenges to cancer care because of the associated risks from the infection itself and the disruption of care delivery. Therefore, many professional societies have published recommendations to help manage patients with cancer during the current pandemic. The objective of our study is to assess the national responses of Middle East North Africa (MENA) countries in terms of publishing relevant guidelines and analyse various components of these guidelines. METHODS: A survey based on the preliminary review of the literature regarding cancer care adaptations has been developed and then completed by a group of oncologists from the following Arab countries affected by the pandemic: Algeria, Egypt, Iraq, Jordan, Kuwait, Lebanon, Morocco, Oman, Saudi Arabia, Syria, Tunisia, United Arab Emirates and Yemen. The survey inquired about COVID-19 cases, national recommendations regarding general measures of COVID-19 prevention and patient care in oncology as well as their implementation about cancer care adaptations during the pandemic. RESULTS: Analysis of the COVID-19 pandemic-related guidelines revealed at least 30 specific recommendations that we categorised into seven essential components. All included countries had national guidelines except one country. Estimated full compliances with all specific category recommendations ranged from 30% to 69% and partial compliance ranged from 23% to 61%. CONCLUSION: There is a very good response and preparedness in the Arab Middle East and North Africa region surveyed. However, there are inconsistencies in the various components of the guidelines across the region, which reflects the evolving status of the pandemic in each country as well as the lack of clear evidence-based guidelines for many of the issues in question. There is a need for a clear framework on essential components that should be included in these guidelines to assure providing the best guidance to the oncology community.

3.
Antib Ther ; 4(3): 135-143, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1319139

ABSTRACT

BACKGROUND: Current worldwide pandemic coronavirus disease 2019 (COVID-19) with high numbers of mortality rates and huge economic problems require an urgent demand for safe and effective vaccine development. Inactivated SARS-CoV2 vaccine with alum. Hydroxide can play an important role in reducing the impacts of the COVID-19 pandemic. In this study, vaccine efficacy was evaluated through the detection of the neutralizing antibodies that protect mice from challenge with SARS-CoV 2 3 weeks after the second dose. We conclude that the vaccine described here has safety and desirable properties, and our data support further development and plans for clinical trials. METHODS: Characterized SARS-COV-2 strain, severe acute respiratory syndrome coronavirus 2 isolates (SARS-CoV-2/human/EGY/Egy-SERVAC/2020) with accession numbers; MT981440; MT981439; MT981441; MT974071; MT974069; and MW250352 at GenBank were isolated from Egyptian patients SARS-CoV-2-positive. Development of inactivated vaccine was carried out in a BSL-3 facilities and the immunogenicity was determined in mice at two doses (55 and 100 µg per dose). RESULTS: The distinct cytopathic effect induced by SARS-COV-2 propagation on Vero cell monolayers and the viral particles were identified as Coronaviridae by transmission electron microscopy and RT-PCR on infected cells cultures. Immunogenicity of the developed vaccine indicated the high antigen-binding and neutralizing antibody titers, regardless of the dose concentration, with excellent safety profiles and no deaths or clinical symptoms in mice groups. The efficacy of the inactivated vaccine formulation was tested by the wild virus challenge of the vaccinated mice and viral replication detection in lung tissues. CONCLUSIONS: Vaccinated mice recorded complete protection from challenge infection via inhibition of SARS-COV-2 replication in the lung tissues of mice following virus challenge, regardless of the level of serum neutralizing antibodies. This finding will support future trials for the evaluation of an applicable SARS-CoV-2 vaccine candidate.

SELECTION OF CITATIONS
SEARCH DETAIL